Banzai Cloud Logo Close
Home Benefits Blog Company Contact
Sign in

Last time we discussed how our Pipeline PaaS deploys and provisions an AWS EFS filesystem on Kubernetes and what the performance benefits are for Spark or TensorFlow. This post is gives: An introduction to TensorFlow on Kubernetes The benefits of EFS for TensorFlow (image data storage for TensorFlow jobs) Pipeline uses the kubeflow framework to deploy: A JupyterHub to create & manage interactive Jupyter notebooks A TensorFlow Training Controller that can be configured to use CPUs or GPUs A TensorFlow Serving container Note that Pipeline also has default Spotguides for Spark and Zeppelin to help support your datascience experience

Read more...

At Banzai Cloud we provision different frameworks and tools like Spark, Zeppelin and, most recently, Tensorflow, all of which run on our Pipeline PaaS (built on Kubernetes). One of Pipeline’s early adopters runs a Tensorflow Training Controller using GPUs on AWS EC2, wired into our CI/CD pipeline, which needs significant parallelization for reading training data. We’ve introduced support for Amazon Elastic File System and made it publicly available in the forthcoming release of Pipeline.

Read more...